The R package LW1949 automates the steps taken in Litchfield and Wilcoxon’s (1949) manual approach to evaluating dose-effect experiments (Adams et al. 2016). Letting the computer do the work saves time and yields the best fit possible using the Litchfield Wilcoxon approach (by minimizing the chi-squared statistic). You can also try a brief demonstration of LW1949 in this web app.
Use the dataprep
function to create a data frame with
the results of a dose-effect experiment. Provide information on three
key input variables,
dose
),ntot
), andnfx
).conc <- c(0.0625, 0.125, 0.25, 0.5, 1, 2, 3)
numtested <- rep(8, 7)
numaffected <- c(1, 4, 4, 7, 8, 8, 8)
mydat <- dataprep(dose=conc, ntot=numtested, nfx=numaffected)
The dataprep
function puts the input variables into a
data frame along with several new variables,
rec
),pfx
),log10dose
),bitpfx
),fxcateg
) identifying none (0),
partial (50), and complete (100) effects, andLWkeep
) to identify observations to keep when
applying Litchfield and Wilcoxon’s (1949) method (their step A).## dose ntot nfx rec pfx log10dose bitpfx fxcateg LWkeep
## 1 0.0625 8 1 1 0.125 -1.2041200 -1.150349 50 TRUE
## 2 0.1250 8 4 2 0.500 -0.9030900 0.000000 50 TRUE
## 3 0.2500 8 4 3 0.500 -0.6020600 0.000000 50 TRUE
## 4 0.5000 8 7 4 0.875 -0.3010300 1.150349 50 TRUE
## 5 1.0000 8 8 5 1.000 0.0000000 Inf 100 TRUE
## 6 2.0000 8 8 6 1.000 0.3010300 Inf 100 TRUE
## 7 3.0000 8 8 7 1.000 0.4771213 Inf 100 FALSE
Use the fitLWauto
and LWestimate
functions
to fit a dose-effect relation following Litchfield and Wilcoxon’s (1949)
method.
The output from fitLWauto
is a numeric vector of length
two, the estimated intercept and slope of the best fitting line on the
log10-probit scale..
## Intercept Slope
## 1.749662 2.308293
The output from LWestimate
is a list with three
elements,
chi
, the chi-squared test comparing observed and
expected effects, including the expected effects, the “corrected”
expected effects (step B in Litchfield and Wilcoxon 1949), and the
contribution to the chi-squared statistic (their step C);params
, the estimated intercept and slope on the
log10-probit scale; andLWest
, additional estimates calculated in the process
of using Litchfield and Wilcoxon’s (1949) method (their steps D and
E).## $chi
## $chi$chi
## chistat df pval
## 1.0439487 4.0000000 0.9030603
##
## $chi$contrib
## exp obscorr contrib
## [1,] 0.1515518 0.1250000 0.03721500
## [2,] 0.3688371 0.5000000 0.37314483
## [3,] 0.6405505 0.5000000 0.43966002
## [4,] 0.8542407 0.8750000 0.02365253
## [5,] 0.9599117 0.9868022 0.14430194
## [6,] 0.9927479 0.9976003 0.02597436
##
##
## $params
## Intercept Slope
## 1.749662 2.308293
##
## $LWest
## ED50 lower upper npartfx ED16 ED84
## 0.17458650 0.08783511 0.34701895 4.00000000 0.06474275 0.47079321
## S lowerS upperS Nprime fED50 fS
## 2.69661856 1.40677894 5.16907910 16.00000000 1.98766192 1.91687441
Use the predlinear
function and the fitted Litchfield
and Wilcoxon model to estimate the effective doses for specified percent
effects (with 95% confidence limits).
## pct ED lower upper
## [1,] 25.0 0.08908568 0.03942532 0.2012985
## [2,] 50.0 0.17458650 0.08783511 0.3470189
## [3,] 99.9 3.80857563 0.45491114 31.8858942
Use the plotDELP
and plotDE
functions to
plot the raw data on the log10-probit and arithmetics scales.
Observations with no or 100% affected are plotted using white filled
circles (at 0.1 and 99.9% respectively in the log10-probit plot).
Use the predLinesLP
and predLines
functions
to add the L-W predicted relations to both plots, with 95%
horizontal confidence intervals for the predicted dose
to elicit a given percent affected.
Adams, J. V., K. S. Slaght, and M. A. Boogaard. 2016. An automated approach to Litchfield and Wilcoxon’s evaluation of dose-effect experiments using the R package LW1949. Environmental Toxicology and Chemistry 35(12):3058-3061. DOI 10.1002/etc.3490
Litchfield, J. T. Jr. and F. Wilcoxon. 1949. A simplified method of evaluating dose-effect experiments. Journal of Pharmacology and Experimental Therapeutics 96(2):99-113.
LW1949. An automated approach (R package) to Litchfield and Wilcoxon’s (1949) evaluation of dose-effect experiments. Available on Cran, with the latest development version on GitHub.